Form Approved

REPORT DOCUMENTATION PAGE ONig No. 0704-0188

cricns, 5earining existing data sources,
i r any other ascect of this
c Renorts, 1215 jaffersen
. 5C 208903,

e

nis rollaction of nicrmation s 2stmated 2 average 1 hour per r2sponse, including the time ©
a dats needed, and completing and reviewing the <ollection of information. Send comments
ding suggestions for reducing this ouraen. 10 Nashington Heacquarters Services, Directora

v, 5 rgton, YA 22202-4302. and 1z ine Dffice of Management and Budget, Paperwerk Reducticn
1. AGENMCY USE ONLY (Leave blank) 2. REPCRT DATE 3. REPORT TYPE AMD DATES COVYERED
25 Sept. 1995 Final Technical 5/26/95 - 9/25/95
3. TITLE AND SUBTITLE 5. FUMDING NUMBERS
Toward Specification Techniques for Pre-screen projection
and other Next-generation User G

N00014-95-11-GO14

5. AUTHGCR(S)
Robert J. K. Jacob

7. PEAFCAMINT CAGANIZATICON MAME(S) AMD ADCRIZ3{E3) 3. PERFOAMING ORGANIZATION
Tufts University RIPORT MUMBIR

Grants & Contracts Administration
Packard Hall
Medford, MA 02155

o RO
BERSR RGN N

Office of Naval Research
495 Summer Street, Room 103 :
Boston, MA 02210

Approved for public release; distribution is unlimited

U D00 werds) i

See attached.

TIANIS

i

j 4 SUaECT

3-D visualization, non-WIMP interface,

s
(<3

7. SECURITY CLASSIFICATION 13, 3ECURITY CLASSIFICATION ]19. SECURITY CLASSIHTATION 120
CF REPORT i OF THIS PAGE { OF ABSTRALT
Unclassified { unclassified i unclassified { UL ;
4 q &
4 e RS 1
NSN 7540-671-280-5300




Toward Specification Techniques for Pre-Screen
Projection and Other Next-Generation User

Final Technical Report

Report Date: 25 September 1995

Report Period: Final Report, 26 May 1995 to 25 September 1995
Grant Number: N00014-95-1-GO14

Principal Investigator: Robert J.K. Jacob

Address: Department of Electrical Engineering and Computer Science, Tufts Univer-
sity, 161 College Avenue, Medford, Mass. 02155 '

Scientific Officer: James Templeman

Address: Code 5513, Naval Research Laboratory, Washington, D.C. 20375

19060719 072 e




-2-

Toward Specification Techniques for Pre-Screen Projection
and Other Next-Generation User Interfaces

Robert J.K. Jacob

Introduction

We have investigated new languages for describing and implementing next-
generation interfaces that might be used in 3-D visualization environments. Working
with researchers at NRL Code 5513, we learned about the interfaces they are currently
developing and are planning for future work. For current work we examined pre-
screen projection and foot control; and we discussed future plans for research in 3-D
manipulation, such as 3-D route planning and object-based 3-D visualization. We then
studied how new specification languages might capture these types of interfaces and
described an approach and conceptual model for doing this. We began with a model
and language that combines discrete and continuous interactions, which is described in
detail in this report. In collaboration with NRL researchers, we considered its applica-
bility to NRL’s 3-D user interface designs. We also began exploring the issue of how
to connect the user interface component to a simulation component of a 3-D visualiza-
tion system.

Basic Model

The first task was to identify the basic structure of next-generation or non-WIMP
interaction [4] as the user sees it. The key question is: What is the essence of the
sequence of interactions in such an interface? Our hypothesis is that it is a set of con-
tinuous relationships, most of which are temporary.

For example, in a virtual environment, a user might grasp, move, and release an
object. The hand position and object position are thus related by a continuous func-
tion (say, an identity mapping between the two 3-D positions)—but only while the
user is grasping the object. Similarly, using a scrollbar in a conventional graphical
user interface, the y coordinate of the mouse and the region of the file being displayed
are related by a continuous function (a linear scaling function, from 1-D to 1-D), but
only while the mouse button is held down. The continuous relationship ceases when
the user releases the mouse button.

Some continuous relationships are permanent. In a conventional physical control
panel, the rotational position of each knob is permanently connected to some variable.
In a flight simulator, the position of the throttle lever and the setting of the throttle
parameter are permanently connected by a continuous function.

The essence of these interfaces seems, then, to be a set of continuous relation-

ships some of which are permanent and some of which are engaged and disengaged
from time to time. These relationships accept continuous input from the user and




-3-

typically produce continuous responses or inputs to the system. The actions that
engage or disengage them are typically discrete inputs from the user (pressing a mouse
button over a widget, grasping an object).

Toward a Model

Most current specification models are based on tokens or events. Their top-down,
triggered quality makes them easy to program (and, in fact, everything in a typical
digital computer ultimately gets translated into something with those properties). But
we see in the above examples that events are the wrong model for describing some of
the interactions we need; they are more straightforwardly described by declarative rela-
tionships among continuous variables. Non-WIMP interface styles tend to have more
of these kinds of interactions. |

Therefore, we need to address the continuous aspect of the interface explicitly in
our specification model. Continuous inputs have often been treated by quantizing
them into a stream of ‘‘change-value’’ or ‘‘motion’” events and then handling them as
discrete tokens. Instead we want to describe continuous user interaction as a first-class
element of our model. Our approach is based on combining dataflow or constraint-like
continuous relationships with token-based event handlers. The key here is providing
an elegant language that maps onto a user’s view of the dialogue and provides good
integration between the two parts. The continuous relationships would be described
with a data-flow graph, which connects continuous input variables to continuous appli-
cation (semantic) data and, ultimately, to continuous outputs, through a network of
functions and intermediate variables. The result resembles a plugboard or wiring
diagram or a set of one-way constraints. Such a model also supports parallel interac-
tion implicitly, because it is simply a declarative specification of a set of relationships
that are in principle maintained simultaneously. (Maintaining them all on a single pro-
cessor within required time constraints is an important issue for the implementation,
but should not appear at this level of the specification.)

Note that trying to describe these interfaces in purely continuous terms or purely
discrete terms is entirely possible, but silly. For example:

+ In the extreme, all physical actions can be viewed as continuous, but we
quantize them in order to obtain discrete inputs. For example, the pressing of
a keyboard key is a continuous action in space. We quantize it into two
states (up and down), but there is a continuum of underlying states, we have
simply grouped them so that those above some point are considered ‘‘up’’
and those below, ‘‘down.”” We could thus view a keyboard interface in con-
tinuous terms. However, we claim that the user model of keyboard input is
as a discrete operation; the user thinks of pressing a key or not pressing it.




-4 -

e Similarly, continuous actions could be viewed as discrete. All continuous
inputs must ultimately be quantized in order to pass them to a digital com-
puter. The dragging of a mouse is transmitted to the computer as a sequence
of discrete moves over discrete pixel positions and, in typical window sys-
tems, processed as a sequence of individual discrete events. However, again,
we claim that the user model of such input is as a smooth, continuous action,
the user does not think of generating individual ‘‘motion’’ events, but rather
of making a continuous gesture.

This approach leads to a two-part model of user interaction. One part is a graph
of functional relationships among continuous variables. Only a few of these relation-
ships are typically active at one moment. The other part is a set of discrete event
handlers. These event handlers can, among other actions, cause specific continuous
relationships to be activated or deactivated. A key issue is how the continuous and
discrete domains are connected, since a modern user interface will typically use both.
One important connection is the way in which discrete events can activate or deac-
tivate the continuous relationships. Purely discrete controls (such as pushbuttons, tog-
gle switches, menu picks) also fit into this framework. They are described by tradi-
tional discrete techniques, such as state diagrams and are covered by the ‘‘discrete’
part of this model. That part serves both to engage and disengage the continuous rela-
tionships and to handle the truly discrete interactions.

The key to this approach is the hypothesis that the fine-grained aspects of non-
WIMP interaction consist of the interplay between continuous and discrete interactions.
The two spheres operate relatively independently with communication paths between
them. Our initial approach, then, is a model for combining data-flow or constraint-like
continuous relationships and token-based event handlers. Its goal is to provide a
language that integrates the two components and maps closely to the user’s view of
the fine-grained interaction in a non-WIMP interface. The model thus comprises:

» A set of continuous user interface Variables, some of which are directly con-
nected to input devices, some to outputs, some to application semantics.
Some variables are also used for communication within the user interface
model (but possibly between the continuous and discrete components), and,
finally, some variables are simply interior nodes of the graph containing inter-
mediate results.

» A set of Links, which contain functions that map from continuous variables to
other continuous variables. A link may be operative at all times or may be
associated with a Condition, which allows it to be turned on and off in
response to other user inputs. This ability to enable and disable portions of
the data flow graph in response to user inputs is a key feature of the model.




-5-

e« A set of EventHandlers, which respond to discrete input events. The
responses may include producing outputs, setting syntactic-level variables,
making procedure calls to the application semantics, and setting or clearing
the Conditions, which are used to enable and disable groups of Links.

The model provides for communication between its discrete (event handlers) and
continuous (links and variables) portions in several ways:

« Communication from discrete to continuous occurs through the setting and
clearing of Conditions, which effectively re-wire the data-flow graph.

o In some situations, there are analogue data coming in, being processed, recog-
nized, then turned into a discrete event. This is handled by a communication
path from continuous to discrete by allowing a link to generate tokens which
are then processed by the event handlers. A link function might generate a
token in response to one of its input variables crossing a threshold. Or it
might generate a token when some complex function of its inputs becomes
true. For example, if the inputs were all the parameters of the user’s fingers,
a link function might attempt to recognize a particular hand posture and fire a
token when it was recognized.

 Finally, as with augmented transition networks and other similar schemes, we
provide the ability for continuous and discrete components to set and test
arbitrary user interface variables, which are accessible to both components.

Languages

We are investigating several alternate syntaxes for languages based on this model.
The first is a two-part graphical language, in which the continuous and discrete com-
ponents are described separately. The second is a graphical language that combines
the two components. The third is a text-based language.

To illustrate syntax here, we will use a familiar example from a WIMP interface,
a simplified slider widget. In it, if the user presses the mouse button down on the
slider handle, the slider will begin following the y coordinate of the mouse, scaled |
appropriately. It will follow the mouse continuously, truncated to lie within the verti-
cal range of the slider area, directly setting its associated semantic-level application
variable as it moves.

We would view this as a functional relationship between the y coordinate of the
mouse and the position of the slider handle, two continuous variables (disregarding
their ultimate realizations in pixel units). This relationship is temporary, however; it is
only enabled while the user is dragging the slider with the mouse button down.
Therefore, we provide event handlers to process the button-down and button-up events
that initiate and terminate the relationship. Those events execute commands that
enable and disable the continuous relationship.




TOOLS
VAR

O

varname
KIND

- LINK

name
COND
FLOW

.
. >

Two-Part Graphical Syntax

The first example, in Figure 1, shows the specification of this simple slider in the
two-part graphical notation, with the upper portion of the screen showing the continu-
ous portion of the specification, using solid grey ovals to represent variables, solid
grey rectangles for links, and grey arrows for data flows. The lower portion shows the
event handler in the form of a state diagram, with states represented as circles and
transitions as arrows. This example language illustrates the use of separate continuous
and discrete specifications and the way in which enabling and disabling of the continu-
ous relationships provides the connection between the two. Abowd [1] and Carr [2, 3]
also present specifications of sliders which separate their continuous and discrete

aspects.
mousepos mousetoval value valtosern handlepos
INPUT DRAGGING SEM ALWAYS OuTPUT

MOUSEDN
Cond: Inside(mousepos,handlepos)

MOUSEUP

Figure 1. Example of two-part graphical syntax

The continuous relationship is divided into two parts. The relationship between
the mouse position and the value variable in the application semantics is temporary,
while dragging; the relationship between value and the displayed slider handle is per-
manent. Because value is a variable shared with the semantic level of the system, it
could also be changed by the application or by function keys or other input, and the




-7 -

slider handle would respond. The variable mousepos is an input variable, which
always gives the current position of the mouse; handlepos is an output variable, which
controls the current position of the slider handle. The underlying user interface
management system keeps the mousepos variable updated based on mouse inputs and
the position of the slider handle updated based on changes in handlepos. The link
mousetoval contains a simple scaling and truncating function that relates the mouse
position to the value of the controlled variable; it is associated with the condition
name dragging, so that it can be enabled and disabled by the state transition diagram.
The link valtoscrn scales the variable value back to the screen position of the slider
handle; it is always enabled.

The discrete portion of this specification is given in the form of a state transition
diagram, although any form of event handler specification may be used interchange-
ably in this system. It accepts a MOUSEDN token that occurs within the slider han-
dle and makes a transition to a new state, in which the dragging condition is enabled.
As long as the state diagram remains in this state, the mousetoval link is enabled, and
the mouse is connected to the slider handle, without the need for any further explicit
specification. The MOUSEUP token will then trigger a transition to the initial state,
causing the dragging condition to be disabled and hence the mousetoval relationship
to cease being enforced automatically. (The condition names like dragging provide a
useful layer of indirection where a single condition controls a set of links; in this
example there is only one link, mousetoval.)

Integrated Graphical Syntax

We can also modify the hybrid approach to unify it into a single representation in
which a separate data flow graph is associated with each state, as seen in Figure 2.
The idea behind this is to imagine that each state in the state transition diagram has an
entire data-flow graph associated with it. When the system enters a state, it begins
executing that data-flow graph and continues until it reaches another state. The state
diagram can be viewed as a set of transitions between whole data-flow graphs, which
can provide a particularly apt description of moded continuous operations (such as
grab, drag, and release).

One obvious drawback of this graphical syntax is that it is more difficult to scale
it to fit a more complex interface than that of Figure 2 into a single page An interac-
tive editor with rapid zooming would solve this problem.

Text-Based Syntax

The same model lends itself to a text-based language, as shown in Figure 3.
Here, we treat each link in the dataflow graph as a separate statement, much like a sin-
gle rule in a production system. In addition to the inputs, outputs, and computation
for each link, we give its enabling condition, that is, the state(s) in which this link will




-8 -
TOOLS
VAR
varname MOUSEDN
KIND Cond: Inside{(mousepos,handlepos)

LINK

s

value handlepos
mousetoval SEM vaitoscrn OUTPUT

mousepos
INPUT

value handlepos
M valtoscrn QUTPUT

MOUSEUP

Figure 2. Example of integrated graphical syntax

be active. The remaining step is to define the states themselves; this could be done
with the same type of state transition diagram used above, but expressed in textual

form as a list of transitions [8].

<link>
<state> /* Empty means this link enabled in all states */

<in> wvalue
<out> handlepos
/* valtoscrn scaling formula goes here */

<link>
<state> dragging /* i.e., enabled only in state "dragging" */
<in> mousepos

<out> value
/* mousetoval scaling formula goes here */

<std>
start:

LEFTDN Cond: Inside(mousepos,handlepos); — dragging




-9-

dragging: LEFTUP —start

Figure 3. Example of text-based syntax

NRL Examples

This simple WIMP example provides a concrete illustration of what a
specification language might look like. We have shown alternative languages based on
our model, and we believe they are a good fit typical 3-D visualization or virtual
environment interactions. To begin to test this, we examined some current and future
NRL research in this area and considered how the model fits the types of new interac-
tion techniques being developed and planned at NRL Code 5513 and, below, give out-
lines how they would fit this model. The sketches below suggest, in general terms,
how these interaction techniques would fit our model. While they omit details, in each
case, the basic fit seems like a fairly natural and straightforward match to the way a
user might view the interaction technique.

Typical Navigation in a Virtual Environment

States: NEUTRAL, FLYING

State transitions: Make pointing gesture to enter FLYING state, release ges-
ture to return to NEUTRAL state

Data flow in NEUTRAL state: none

Data flow in FLYING state: Camera moves forward at constant speed in
direction head (or in some systems, hand) is pointing

Pre-Screen Projection [6, 12]

States: None. This description ignores clutching; clutching would add a
second state in which the data flow below is inactive, plus some actions on
the state transitions ’

Data flow: At all times, head position and orientation continuously control
camera position and orientation
Note: Progressive disclosure may be convenient to represent by adding deci-
sion nodes to a data flow graph

Foot Control for Navigation




-10 -

States: none (ignoring clutching feature that might be added)

Data flow: At all times, pressure on foot sensors continuously controls speed
and direction of motion

Note: Data flow graph might be appropriate to represent the relationship
between the sensor values and the actual direction of motion

Note: This assumes a physical model in which speed is a free parameter than
can be set directly by the user interface layer (see discussion of layers below).

3-D Route Planning

Scenario: User’s left (or non-dominant) hand can grab and move the scene.
Right hand lays down a piecewise linear line through it, using a button press
to terminate each segment. Right hand can also edit previous segments.

Note: The description contains two orthogonal parts and uses substates, much
like those used by Harel [5]. The left hand operation is described by two
states and a data flow associated with one of them. The right hand operation
is described by two states, plus two substates within one of them, plus associ-
ated data flows.

States (left hand): NEUTRAL, MOVESCENE

State transition (left hand): Make grabbing gesture to enter MOVESCENE
state, and set grabloc := location of grab at time of transition

State transition (left hand): Release grabbing gesture to return to NEUTRAL
state

Data flow in MOVESCENE state: Left hand position and orientation continu-
ously controls position and orientation of point grabloc within scene

States (right hand, orthogonal to above): DRAWING, EDITING

~ State transition (right hand): Major transition between DRAWING and EDIT-

ING states could be function key or other command

State transition (right hand): In state DRAWING, button click makes transi-
tion back to same state, draws a permanent line from startpos to right hand,
and sets startpos := current position of right hand

Data flow in state DRAWING: Rubber band line is continuously displayed
between startpos and position of right hand.

Substates (right hand, within EDITING state): NEUTRAL, MOVEPOINT
Substate transition (right hand, within EDITING state): Right hand grab ges-

ture located near a line segment endpoint makes transition from NEUTRAL to
MOVEPOINT state and sets p := that endpoint




.11 -

o Substate transition (right hand, within EDITING state): Right hand releasing
grab gesture makes transition from MOVEPOINT to NEUTRAL, and selected
point p and the (one or two) line segments attached to it are moved to current
position of right hand

o Data flow in state MOVEPOINT (within EDITING state): Selected point p
and the (one or two) line segments attached to it continuously follow position
of right hand

« Note: Initializations are not shown (e.g., startpos needs an initial null value
and a way to handle that null case)

Testbed

To test this approach, we have begun developing a testbed to support this model.
The testbed will be based on a suite of hardware and software that is available at both
Tufts and NRL, so our results can continue to be shared in future work. The hardware
is an SGI Indigo 2 graphics workstation equipped with 3-D trackers and stereo shutter
glasses. Our software will use SGI Performer software for displaying output, and we
have developed a constraint algorithm based on the Eval/Vite system from Scott Hud-
son at Georgia Tech [7] for rapid, real-time solution of the dataflow graphs. We may
also develop the constraint algorithm further, to handle time-dependent motions, physi-
cal properties, and constraints that refer to other constraints. The state diagrams are
executed by an interpreter originally developed at NRL [8,9]. All software is written
in C++ for Unix.

Simulation Component

The next step is to define the boundary between the user interface software and
the simulation component for 3-D environments: We began exploring the issue of
how to describe, incorporate, or communicate with the simulation component of the
system. This is a new issue for 3-D interfaces, because simulation is a very small
component of most 2-D interfaces, but a growing portion of 3-D ones. 3-D interfaces
often include extensive geometric and physical models and simulations, in contrast to
typical 2-D ones. This includes defining the extent of the physical model and how it
connects to the rest of the user interface components. While these aspects are, logi-
cally, part of the ‘‘user experience,”” we hypothesize that they are a sufficiently
separate and extensive realm that they should be treated in separate software layers.

First, we make a separation between the basic physical model or simulation com-
ponent and the rest of the user interface. Then, we began investigating how the simu-
lation component (1) ought to be expressed and (2) ought to be interfaced to the other
user interface components. As a starting point, we posit the simulation as a black box
with a set of parameters that can be controlled by the user interface. This leads to a
layered model that treats different aspects of the user interface in different layers. As




.12 -

with most such models, its goal is separation of concerns and encapsulation. We want
to be able to describe all of the user-visible aspects of the environment, but not to
have to think about them all at the same time. The key is designing the right boun-
daries between the packages.

For many aspects of 3-D environments, the system behavior and corresponding
interaction description is, essentially, “‘It is just like the physical world.”” That is, the
goal of the system design is to create an illusion of objects and behaviors that operate
just as they do in the real world. For this, physical modeling is key. While it may be
very difficult to achieve and require complex algorithms and clever system design, this
behavior is easy to describe simply by describing the real-world counterparts of the
objects we are building. Analogously, rendering, too, is complex and tricky, but
modern 3-D graphics packages deal with it as a high-level abstraction, simply by giv-
ing the camera position and lighting model.

We thus ask what types of interactions should be programmed explicitly in the
user interface description language vs. what types can be treated simply as side effects
of the operation of a physical model? If bumping into a wall produces sound or haptic
feedback, it may be appropriate simply to describe that as part of the physical model
and not explicitly as a user interaction. However, if bumping into the wall causes the
user to teleport to a new location, this should be described explicitly as a user interac-
tion, since it does not obey a conventional physical model of the world. The analogy
in WIMP interfaces is that the action of the cursor following the mouse is usually not
thought of as an interface element that is programmed in the UIDL, but simply a per-
manent part of the hardware and software environment. In 3-D, the analogy applies,
but its base physical environment is far, far more complex.

For many early virtual environments this physical model was the entire user inter-
face. However, most systems will ultimately require some capabilities that do not
mimic the real world and cannot be described simply by their physical properties.
There will be ways to fly or teleport, to issue commands, create and delete objects,
search and navigate, or other facilities that go beyond the real-world analogy. These
behaviors are of particular interest here, since they are difficult to describe by relying
only on the real-world analogy.

A further separation may be made between geometric properties of the simulation
and other physical properties. Handling the geometric properties, particularly render-
ing and collision detection, is relatively well understood in 3-D interfaces, and it can
be described in fairly standard ways. In contrast, other physical properties have thus
far been handled in ad-hoc ways. This leads to the following layered model:

e Geometric layer: Behaviors of objects that can be explained entirely by their
location and geometry. The software will draw most aspects of the 3-D world
simply by traversing the information in this layer and rendering it. Like a
display list graphics system, the programmer need not explicitly write code to




-13 -

draw the objects, but needs only to define them and add them to the display
list; the underlying software will render them when needed.

* Physical layer: Behaviors that can be explained by physical properties other
than geometry, but which behave just as they do in the real physical world.
They will make use of the geometric information and add other properties and
behaviors in this layer.

* Interface layer: Behaviors that do not match the physical world, that is, the
special commands and operations that have been designed as the user inter-
face. They can manipulate free parameters of objects in the Physical layer
(e.g., modify an object) or Geometric layer (e.g., move an object) as well as
in the application layer (e.g., create or delete an object).

* Application layer: This contains the ‘‘semantics’” or application portion of the
system, as with other types of interactive systems. For many early examples
of virtual environments, this layer was almost empty.

The boundary between the Physical and Geometric layers is really determined by
the state of the art in 3-D graphics software. While systems for handling and render-
ing geometry are well established, systems for handling other aspects of physical simu-
lation are much less standard. Defining this boundary allows us to take advantage of
the standard capabilities. Its real purpose is to separate aspects of the simulation that
are well understood and packaged from those that must still be programmed in ad-hoc
or application specific ways. Currently, only geometry falls into the first category, but,
in the future, we hope to take advantage of progress in 3-D physical simulation
software, such as that currently being sponsored by ONR (SHASTRA and Isaac pro-
jects at Purdue, Baraff’s work at CMU). As such work becomes established, the boun-
dary between these two layers may move or become unnecessary.

The boundary between the Physical and Interaction layers is determined approxi-
mately by asking whether a behavior can be described simply by saying that it is sup-
posed to operate exactly like the real world. Observe that if all interaction within the
3-D environment were precisely modeled on corresponding physical actions, the
Interaction layer would be empty. However, much of the benefit of realistic
computer-generated environments is their ability to mimic the real world plus provide
additional capabilities only available in a computer.

It may also turn out to be useful to define additional, higher layers in this model.
Some VR applications are beginning to combine the notion of intelligent agents, some-
times in the form of user-visible animated characters in the display. In an agent-based
interface, the lower layers would still contain the mechanisms for interacting with the
agents and changing their parameters. However, the behavior of the agents caused by
such parameter changes, or the ‘‘goals’” or ‘‘personalities’” of the agents may be
specified separately, in a higher level. Similarly, in an interface involving discourse-




L

- 14 -

based interaction, or other higher-level constructs, their description would come at a
higher ‘‘discourse’’ level, which might be separated into its own module [10, 11].

Future Work

The next step in this research will be to test and stabilize the language and
express some of the above specifications formally. At the same time, we will continue
building the testbed. Then, we will see how well the new 3-D interaction techniques
can be implemented on our testbed, directly from their descriptions. Finally, we will
refine the simulation component and its interface to other software components.

References

1. G.D. Abowd and A.J. Dix, ‘‘Integrating Status and Event Phenomena in Formal
| Specifications of Interactive Systems,”” Proc. ACM SIGSOFT’94 Symposium on
Foundations of Software Engineering, Addison-Wesley/ACM Press, New Orleans,
La., 1994.

2. D. Carr, ‘‘Specification of Interface Interaction Objects,”” Proc. ACM CHI’%4
Human Factors in Computing Systems Conference, pp. 372-378, Addison-
Wesley/ACM Press, 1994.

3. D.A. Carr, N. Jog, H.P. Kumar, M. Teittinen, and C. Ahlberg, ‘‘Using Interaction
Object Graphs to Specify and Develop Graphical Widgets,”” Technical Report
ISR-TR-94-69, Institute For Systems Research, University of Maryland, 1994.

4. M. Green and R.J.K. Jacob, ‘‘Software Architectures and Metaphors for Non-
WIMP User Interfaces,”” Computer Graphics, vol. 25, no. 3, pp. 229-235, July
1991.

5. D. Harel, *“On Visual Formalisms,”” Comm. ACM, vol. 31, no. 5, pp. 514-530,
May 1988.

6. D. Hix, J.N. Templeman, and R.J.K. Jacob, ‘‘Pre-Screen Projection: From Con-
cept to Testing of a New Interaction Technique,”” Proc. ACM CHI’95 Human
Factors in Computing Systems Conference, pp. 226-233, Addison-Wesley/ACM
Press, 1995.
http://www.acm.org/sigchi/chi95/Electronic/documnts/papers/dh_bdy.htm
[HTML); http://www.cs.tufts.edu/“jacob/papers/chi95.txt [ASCII].

7. S. Hudson and 1. Smith, ‘‘Practical System for Compiling One-Way Constraint
into C++ Objects,”” Technical Report, Georgia Tech Graphics, Visualization, and
Usability Center, 1994.

8. R.J.K. Jacob, ‘‘An Executable Specification Technique for Describing Human-

Computer Interaction,”” in Advances in Human-Computer Interaction, Vol. 1, ed.
by H.R. Hartson, pp. 211-242, Ablex Publishing Co., Norwood, N.J., 1985.




10.

11.

12.

- 15 -

R.J.K. Jacob, ‘A Specification Language for Direct Manipulation User Inter-
faces,”” ACM Transactions on Graphics, vol. 5, no. 4, pp. 283-317, 1986.
http://www.cs.tufts.edu/“jacob/papers/tog.txt [ASCII];
http://www.cs.tufts.edu/“jacob/papers/tog.ps [Postscript].

M.A. Perez and J.L. Sibert, ‘‘Focus in Graphical User Interfaces,”” Proc. ACM
International Workshop on Intelligent User Interfaces, Addison-Wesley/ACM
Press, Orlando, Fla., 1993.

M.A. Perez and R.J.K. Jacob, ‘A UIMS Architecture for Focus Processing in a
Graphical User Interface,”” AAAI Symposium on Intelligent Multi-Media Multi-
Modal Systems, pp. 87-92, AAAI, Stanford, Calif., 1994.

J. Templeman, ‘‘Pre-screen Projection of Virtual Scenes,”” Proc. Virtual Reality
Systems Conference, SIG Advanced Applications, New York, N.Y., 1993.




